

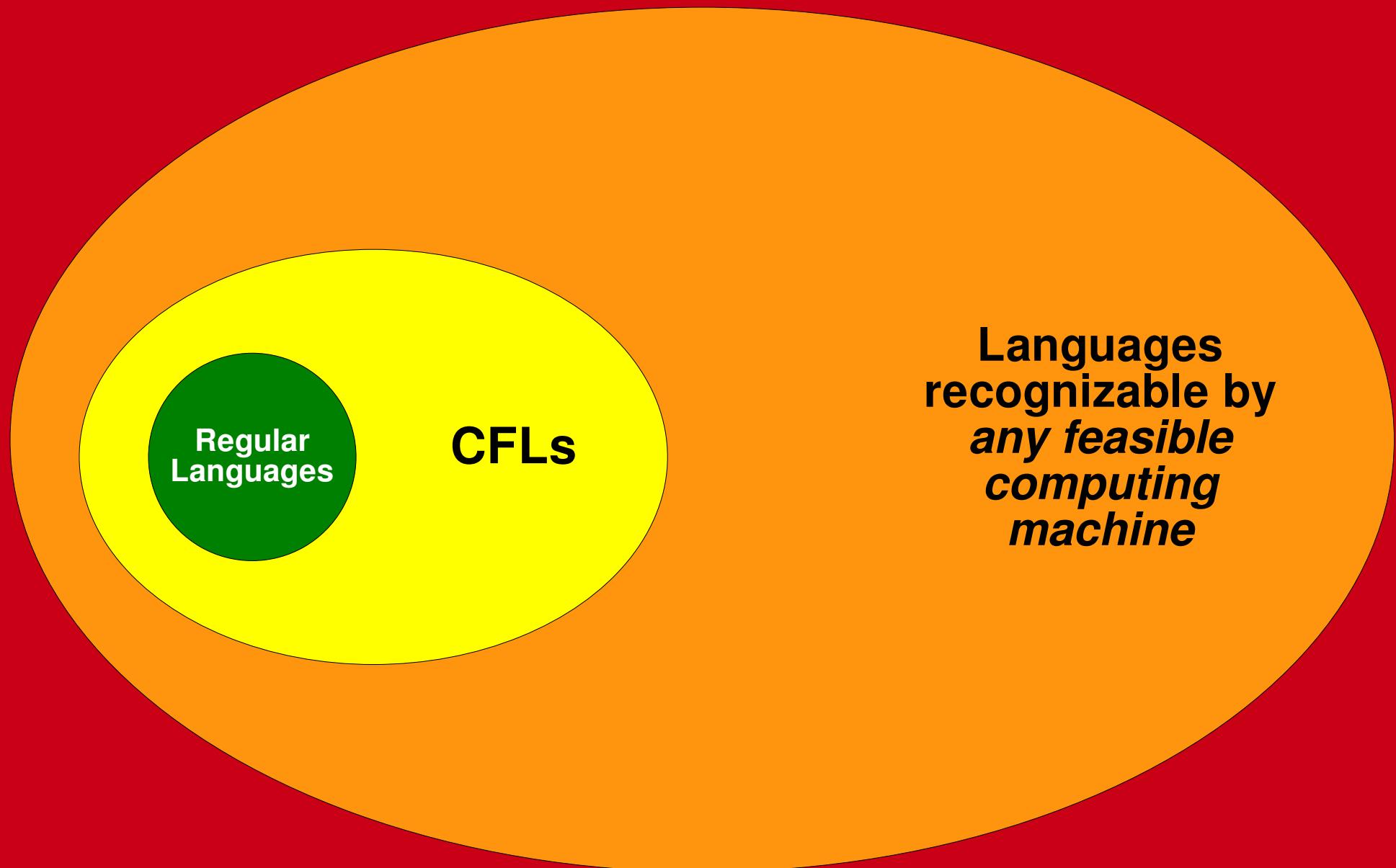
CS103  
FALL 2025



# Lecture 20: Turing Machines

**Part 1 of 3**

What problems can we solve with a computer?



All Languages

That same drawing, to scale.

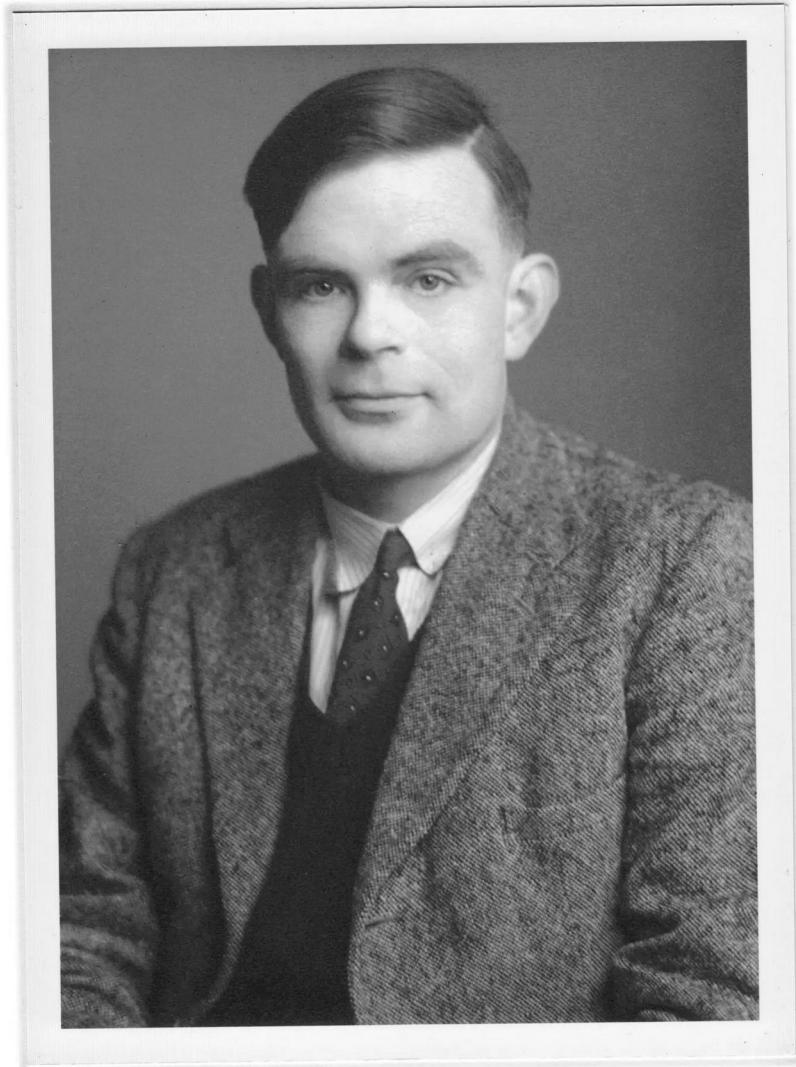
# The Problem

- Finite automata accept precisely the regular languages.
- We may need unbounded memory to recognize context-free languages.
  - e.g.  $\{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$  requires unbounded counting.
- How do we model a computing device that has unbounded memory?

# A Brief History Lesson

# Turing Machines

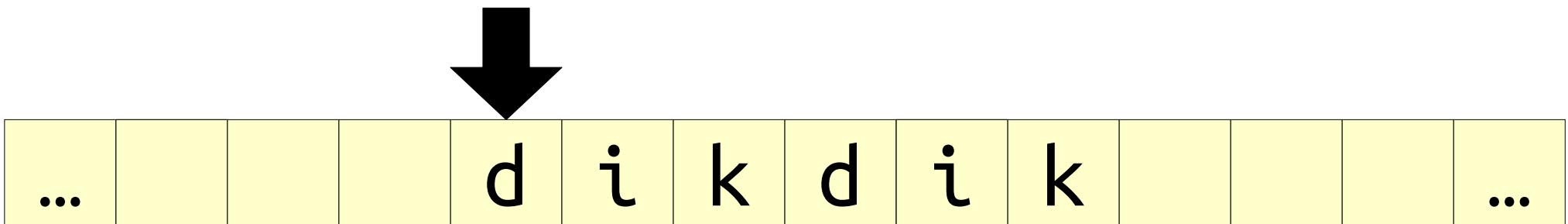
- In March 1936, Alan Turing (aged 23!) published a paper detailing the ***a-machine*** (for ***automatic machine***), an automaton for computing on real numbers.
- They're now more popularly referred to as ***Turing machines*** in his honor.
- He also later made contributions to computational biology, artificial intelligence, cryptography, etc. Seriously, Google this guy.



**Key Idea:** Even if you need huge amounts of scratch space to perform a calculation, at each point in the calculation you only need access to a small amount of that scratch space.

# Turing Machines

- To provide his machines extra memory, Turing gave his machines access to an ***infinite tape*** subdivided into a number of ***tape cells***.
- A Turing machine can only see one tape cell at a time, the one pointed at by the ***tape head***.
- The Turing machine can
  - read the cell under the tape head,
  - (possibly) change which symbol was written under the tape head, and
  - move its tape head to the left or to the right.



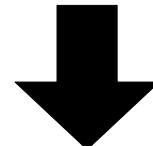
# Turing Machines

- Over the years, there have been many simplifications and edits to Turing's original automata.
  - In practice, electronic computers are written in terms of individual instructions rather than states and transitions.
  - Turing's original paper deals with computing individual real numbers; we typically want to compute functions of inputs.
- What we're going to present as "Turing machines" in this class differ significantly from Turing's original description, while retaining the core essential ideas.
  - (Our model is closer to Emil Post's *Formulation 1* and Hao Wang's *Basic Machine B*, for those of you who are curious.)
- If you'd like to learn more about Turing's original version of the Turing machine, come chat with us after class!

# Turing Machines

- A TM is a series of instructions that control a tape head as it moves across an infinite tape.
- The tape begins with the input string written somewhere, surrounded by infinitely many blank cells.
  - Rule: The input string cannot contain blank cells.
- The tape head begins above the first character of the input. (If the input is  $\epsilon$ , the tape head points somewhere on a blank tape.)

```
Start:  
  If Blank Return True  
  If 'b' Return False  
  Write 'x'  
  Move Right  
  If Not 'b' Return False  
  Write 'x'  
  Move Right  
  Goto Start
```

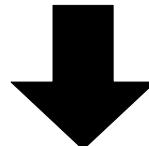


|     |  |  |  |  |   |   |   |   |   |   |  |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|
| ... |  |  |  |  | a | b | a | b | a | b |  |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|

# Turing Machines

- We begin at the **Start** label.
- Labels indicate different sections of code. The name **Start** is special and means “begin here.”
- Labels have no effect when executed. We just move to the next line.

```
Start:  
  If Blank Return True  
  If 'b' Return False  
  Write 'x'  
  Move Right  
  If Not 'b' Return False  
  Write 'x'  
  Move Right  
  Goto Start
```



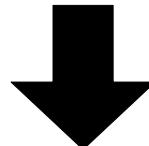
|     |  |  |  |  |   |   |   |   |   |   |  |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|
| ... |  |  |  |  | a | b | a | b | a | b |  |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|

# Turing Machines

- A statement of the form  
**If** *symbol command*  
checks if the character  
under the tape head is  
*symbol*.
- If so, it executes  
*command*.
- If not, nothing happens.

Start:

```
If Blank Return True
If 'b' Return False
Write 'x'
Move Right
If Not 'b' Return False
Write 'x'
Move Right
Goto Start
```



|     |  |  |  |  |   |   |   |   |   |   |  |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|
| ... |  |  |  |  | a | b | a | b | a | b |  |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|

# Turing Machines

- The statement

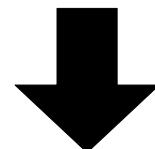
**Write** *symbol*

writes *symbol* to the cell under the tape head.

- The *symbol* can either be Blank or a character in quotes.

Start:

```
If Blank Return True
If 'b' Return False
Write 'x'
Move Right
If Not 'b' Return False
Write 'x'
Move Right
Goto Start
```

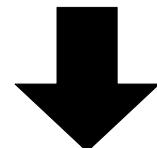


|     |  |  |  |  |   |   |   |   |   |   |  |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|
| ... |  |  |  |  | a | b | a | b | a | b |  |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|

# Turing Machines

- The command  
**Move *direction***  
moves the tape  
head one step in  
the indicated  
direction (either  
Left or Right).

```
Start:  
  If Blank Return True  
  If 'b' Return False  
  Write 'x'  
  Move Right  
  If Not 'b' Return False  
  Write 'x'  
  Move Right  
  Goto Start
```



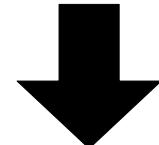
|     |  |  |  |  |   |   |   |   |   |   |  |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|
| ... |  |  |  |  | x | b | a | b | a | b |  |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|

# Turing Machines

- A statement of the form  
**If Not** *symbol command*  
sees if the cell under  
the tape head holds  
*symbol*.
- If so, nothing happens.
- If not, it executes  
*command*.

Start:

```
If Blank Return True
If 'b' Return False
Write 'x'
Move Right
If Not 'b' Return False
Write 'x'
Move Right
Goto Start
```



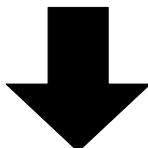
|     |  |  |  |  |   |   |   |   |   |   |  |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|
| ... |  |  |  |  | x | b | a | b | a | b |  |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|

# Turing Machines

- The command  
**Goto label**  
jumps to the indicated label.
- This program just has a Start label, but most interesting programs have other labels beyond this.

Start:

```
If Blank Return True
If 'b' Return False
Write 'x'
Move Right
If Not 'b' Return False
Write 'x'
Move Right
Goto Start
```

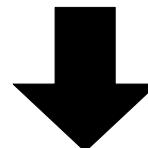


|     |  |  |  |  |   |   |   |   |   |   |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|-----|
| ... |  |  |  |  | X | X | a | b | a | b |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|-----|

# Turing Machines

- A TM stops when executing the **Return *result*** command.
- Here, *result* can be either True or False.
- (If we “fall off” the bottom of the program, the TM acts as though it executes the **Return False** command.)

```
Start:  
  If Blank Return True  
  If 'b' Return False  
  Write 'x'  
  Move Right  
  If Not 'b' Return False  
  Write 'x'  
  Move Right  
  Goto Start
```



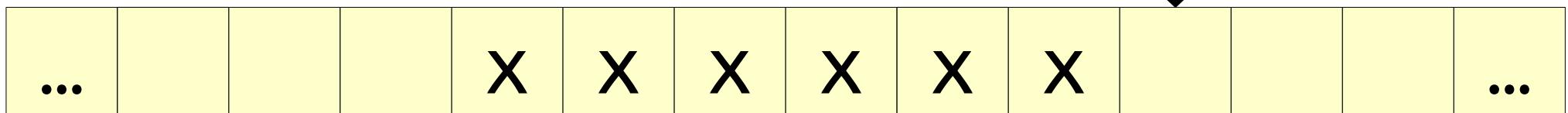
|     |  |  |  |  |   |   |   |   |   |   |  |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|
| ... |  |  |  |  | X | X | a | b | a | b |  |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|

# Turing Machines

- This TM initially started up with the string ababab on its tape, so this means that TM returns true on the input ababab, not xxxxxxx.
- An intuition for this: we gave this program an input. It therefore returned true with respect to that input, not whatever internal data it generated in making its decision.

Start:

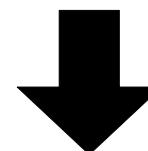
```
If Blank Return True
If 'b' Return False
Write 'x'
Move Right
If Not 'b' Return False
Write 'x'
Move Right
Goto Start
```



# Turing Machines

- To summarize, we only have six commands:
  - Move *direction*
  - Write *symbol*
  - Goto *label*
  - Return *result*
  - If *symbol command*
  - If Not *symbol command*
- Despite their simplicity, TMs are *surprisingly* powerful. The rest of this lecture explores why.

Start:  
If Blank Return True  
If 'b' Return False  
Write 'x'  
Move Right  
If Not 'b' Return False  
Write 'x'  
Move Right  
Goto Start



|     |  |  |  |  |   |   |   |   |   |   |  |  |  |  |     |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|
| ... |  |  |  |  | X | X | X | X | X | X |  |  |  |  | ... |
|-----|--|--|--|--|---|---|---|---|---|---|--|--|--|--|-----|

# Programming Turing Machines

# Our First Challenge

- The language

$$\{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$$

is a canonical example of a nonregular language. It's not possible to check if a string is in this language given only finite memory.

- Turing machines, however, are powerful enough to do this. Let's see how.

# A Recursive Approach

- We can process our string using this recursive approach:
  - The string  $\epsilon$  is in  $L$ .
  - The string **a** $w$ **b** is in  $L$  if and only if  $w$  is in  $L$ .
  - Any string starting with **b** is not in  $L$ .
  - Any string ending with **a** is not in  $L$ .
- All that's left to do now is write a TM that implements this.

Start:

If Blank Return True

If 'b' Return False

# Write Blank

# ZipRight:

## Move Right

If Not Blank Goto ZipRight

## Move Left

If Not 'b' Return False

# Write Blank

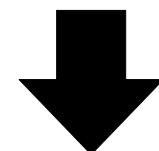
ZipLeft:

Move Left

If Not Blank Goto ZipLeft

# Move Right

Goto Start

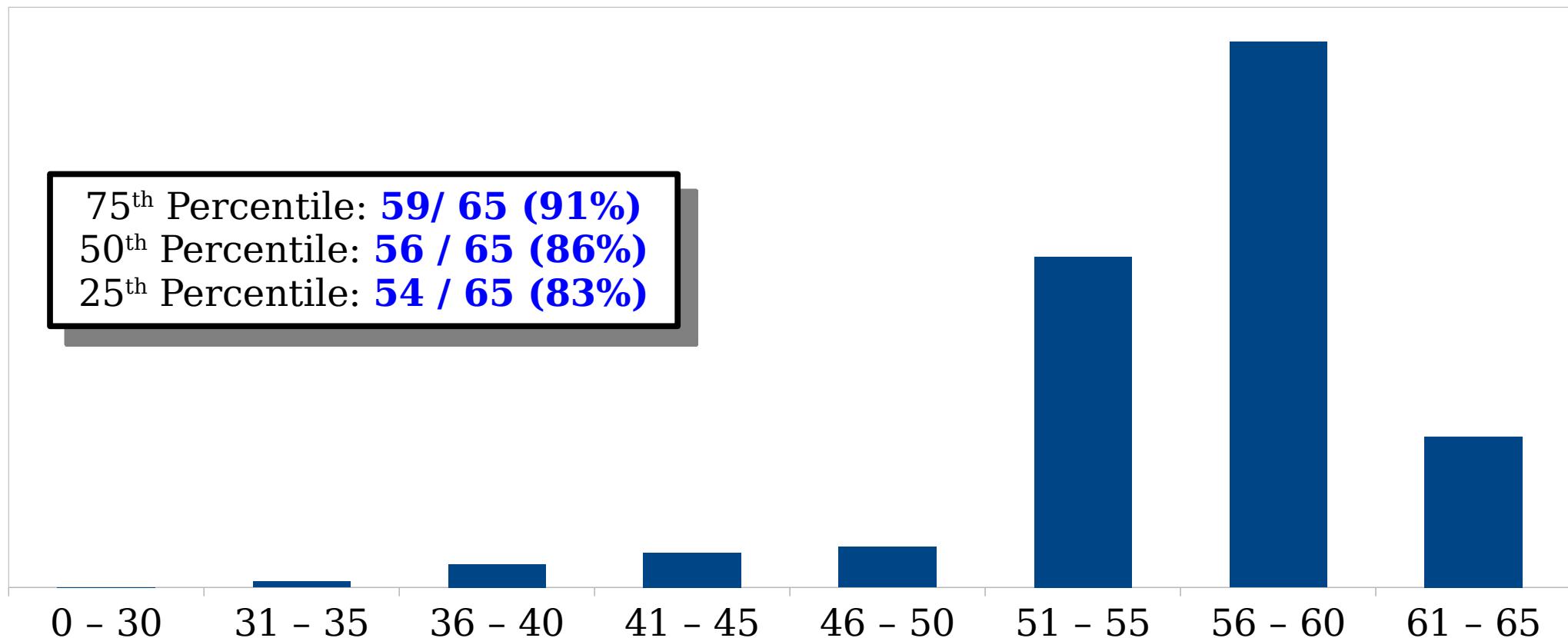


Time-Out for Announcements!

# Midterm Exam

- You're done with the second midterm! Hooray!
- We will be grading the exam this weekend and will release scores as soon as they're ready.
- We've released preliminary solutions to the exam on the course website.
  - We don't have statistics, common mistakes, etc., and only have one solution route for each proof.
- ***Do not change your grading basis or withdraw*** until you've run some grade calculations; use Sean's amazing ***Grade Cruncher*** on the course website.

# Problem Set 6 Graded



Back to CS103!

# Our Next Challenge

- Let's now take aim at this more general language:
$$\{ w \in \{ \mathbf{a}, \mathbf{b} \}^* \mid w \text{ has an equal number of } \mathbf{a}'\text{s and } \mathbf{b}'\text{s } \}$$
- This language is not regular (do you see why?)
- It is context-free, but it's a bit tricky to write a CFG for it. (This is a great exercise!)
- Let's see how to design a TM for it.

# Another Idea

- We just built a TM for the language
$$\{ w \in \{a, b\}^* \mid w \text{ has the same number of } a\text{'s and } b\text{'s } \}.$$
- An observation: this would be a *lot* easier to test for if all the **a**'s came before all the **b**'s.
  - In fact, that would turn this into checking if the string has the form **a<sup>n</sup>b<sup>n</sup>**, which we already know how to do!
- **Idea:** Could we sort the characters of our input string?

# Exploring This Idea

# Cool TM Tricks 1: *Fibonacci Numbers*

## Cool TM Tricks 2: *Decimal Fibonacci*

# Summary for Today

- Turing machines are abstract computers that issue commands to an infinite tape subdivided into cells.
- Each step of the TM can move the tape head, change what's on the tape, or jump to a different part of the program.
- TMs can be composed together to build larger TMs out of smaller ones.

# Next Time

- *The Church-Turing Thesis*
  - How powerful are Turing machines?
- *Decidability and Recognizability*
  - Two notions of “solving a problem.”