Lecture 20:
Turing Machines

Part 1 of 3

What problems can we solve with a computer?

Languages
recognizable by

Regular any feasible
Languages computing
machine

All Languages

That same drawing, to scale.

All Languages

The Problem

* Finite automata accept precisely the
regular languages.

« We may need unbounded memory to
recognize context-free languages.

* e.g. 1 a"h" | n €N } requires unbounded
counting.

« How do we model a computing device
that has unbounded memory?

A Brief History Lesson

Turing Machines

* In March 1936, Alan Turing
(aged 23!) published a paper
detailing the a-machine (for
automatic machine), an
automaton for computing on
real numbers.

* They’'re now more popularly
referred to as Turing
machines in his honor.

 He also later made
contributions to
computational biology,
artificial intelligence,
cryptography, etc. Seriously,
Google this guy.

Key Idea: Even if you need huge amounts
of scratch space to perform a calculation,
at each point in the calculation you only
need access to a small amount of that
scratch space.

Turing Machines

« To provide his machines extra memory, Turing gave his
machines access to an infinite tape subdivided into a
number of tape cells.

« A Turing machine can only see one tape cell at a time,
the one pointed at by the tape head.

* The Turing machine can

* read the cell under the tape head,

* (possibly) change which symbol was written under the tape
head, and

 move its tape head to the left or to the right.

4

d 1 kd1ik

Turing Machines

* Over the years, there have been many simplifications and
edits to Turing’s original automata.

* In practice, electronic computers are written in terms of
individual instructions rather than states and transitions.

» Turing’s original paper deals with computing individual real
numbers; we typically want to compute functions of inputs.

 What we’re going to present as “Turing machines” in this
class differ significantly from Turing’s original
description, while retaining the core essential ideas.

 (Our model is closer to Emil Post’s Formulation 1 and Hao
Wang’s Basic Machine B, for those of you who are curious.)

 If you’d like to learn more about Turing’s original version
of the Turing machine, come chat with us after class!

Turing Machines

« ATM is a series of instructions
that control a tape head as it
moves across an infinite tape.

« The tape begins with the input
string written somewhere,
surrounded by infinitely many
blank cells.

* Rule: The input string cannot
contain blank cells.

 The tape head begins above the
first character of the input. (If the
input is g, the tape head points
somewhere on a blank tape.)

Start:
If Blank Return True
If 'b' Return False
Write 'x'
Move Right
If Not 'b' Return False
Write 'x'

Move Right
Goto Start

a b a

b a b

Turing Machines

- We begin at the Start Start:
label. If Blank Return True
- Labels indicate different If 'b’ Return False
sections of code. The Write 'x'
name Start is special Move Right
and means “begin here. If Not 'b' Return False
- Labels have no etfect Write 'x'

when executed. We just
move to the next line.

Move Right
Goto Start

a b ab ab

Turing Machines

Start:
If Blank Return True

. If 'b' Return False
checks if the Charactgr Write 'x'
under the tape head is

A statement of the form

If symbol command

Move Right
symbol.
. If Not 'b' Return False
 If so, it executes e
Write "X
command. ,
. Move Right
 If not, nothing happens. Coto Start

a b ab ab

Turing Machines

Start:
If Blank Return True
If 'b' Return False

e The statement
Write symbol

writes symbol to the Write 'x'

cell under the tape Move Right

head. If Not 'b' Return False
 The symbol can Write 'x’

either be Blank or a Move Right

character in quotes. Goto Start

a b ab ab

Turing Machines

e The command
Move direction

moves the tape
head one step in
the indicated
direction (either
Left Oor Right).

Start:
If Blank Return True
If 'b' Return False
Write 'x'
Move Right
If Not 'b' Return False
Write 'x'

Move Right
Goto Start

X b

Turing Machines

Start:
If Blank Return True
If 'b' Return False
Write 'x'
Move Right

« A statement of the form
If Not symbol command

sees if the cell under
the tape head holds
symbol.

 If so, nothing happens.

e If not, it executes
command.

If Not 'b' Return False
Write 'x'

Move Right

Goto Start

Turing Machines

Start:
If Blank Return True
If 'b' Return False

e The command
Goto label
jumps to the indicated

Write 'x'
label. ,
| | Move Right
 This program just has a If Not 'b' Return False

Start label, but most drite 'x!
interesting programs

have other labels Move Right
beyond this. Goto Start

Turing Machines

- A TM stops when executing |>tart:

the If Blank Return True
Return result If 'b' Return False

command. Write 'x'
« Here, result can be either Move Right

True or False. If Not 'b' Return False
o (If we “fall off” the bottom : Lo

of the program, the TM acts nrite .X

as though it executes the Move Right

Return False command.) Goto Start

X X a b a b

Turing Machines

- This TM initially started up |>tart:

with the string ababab on If Blank Return True
its tape, so this means that If 'b' Return False
TM returns true on the , .
input ababab, not xxxxxx. Write 'X
* An intuition for this: we Move Right
gave this program an If Not 'b' Return False
input. It therefore Write 'x'

returned true with respect
to that input, not whatever
internal data it generated Goto Start
in making its decision.

Move Right

X X X X X X

Turing Machines

« To summarize, we only Start:
have six commands: If Blank Return True
* Move direction If 'b' Return False
* Write symbol Write 'x'
 Goto label

Move Right
If Not 'b' Return False
Write 'x'

Return result

If symbol command

If Not symbol command

* Despite their simplicitly,
TMs are surprisingly Goto Start
powerful. The rest of this
lecture explores why.

Move Right

X X X X X X

Programming Turing Machines

Our First Challenge

 The language
{a’" | n €N }

is a canonical example of a nonregular
language. It’s not possible to check if a
string is in this language given only finite
memory.

 Turing machines, however, are powertul
enough to do this. Let’s see how.

A Recursive Approach

 We can process our string using this
recursive approach:

* The string € is in L.

* The string awb is in L if and only if w is in L.
* Any string starting with b is not in L.

» Any string ending with ais not in L.

 All that’s left to do now is write a TM that
implements this.

Start:
If Blank Return True
If 'b' Return False
Write Blank

ZipRight:
Move Right
If Not Blank Goto ZipRight
Move Left
If Not 'b' Return False
Write Blank

ZiplLeft:
Move Left
If Not Blank Goto ZipLeft
Move Right
Goto Start

Time-Out for Announcements!

Midterm Exam

* You're done with the second midterm! Hooray!

 We will be grading the exam this weekend and will
release scores as soon as they’re ready.

« We’ve released preliminary solutions to the exam on
the course website.

 We don’t have statistics, common mistakes, etc., and only
have one solution route for each proof.

Do not change your grading basis or withdraw
until you’ve run some grade calculations; use Sean’s
amazing Grade Cruncher on the course website.

https://web.stanford.edu/~szum/grade-cruncher/

Problem Set 6 Graded

75% Percentile: 59/ 65 (91%)
50t Percentile: 56 / 65 (86%)
25% Percentile: 54 / 65 (83%) I
- I I] l

0-30 31-35 36-40 41-45 46-50 D51-55 56-60 61-65

Back to CS103!

Our Next Challenge

* Let’s now take aim at this more general
language:

{ w € {a, b}* | w has an equal number
of a’'sand b’s }

» This language is not regular (do you see why?)

It is context-free, but it’s a bit tricky to write a
CFG for it. (This is a great exercise!)

* Let’s see how to design a TM for it.

Another Idea

 We just built a TM for the language

{ w € {a, b}* | w has the same number of
a’s and b’s }.

 An observation: this would be a lot easier to test
for if all the a’s came before all the b’s.

 In fact, that would turn this into checking if the string
has the form a"b", which we already know how to do!

« Idea: Could we sort the characters of our input
string?

Exploring This Idea

Cool TM Tricks 1: Fibonacci Numbers

Cool TM Tricks 2: Decimal Fibonacci

Summary for Today

 Turing machines are abstract computers
that issue commands to an infinite tape
subdivided into cells.

 Each step of the TM can move the tape
head, change what’s on the tape, or jump
to a ditferent part of the program.

« TMs can be composed together to build
larger TMs out of smaller ones.

Next Time

« The Church-Turing Thesis
« How powertul are Turing machines?
* Decidability and Recognizability

« Two notions of “solving a problem.”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

